

Previously in CS109...

Game of Estimators

Non spoiler alert: this didn't happen in game of thrones

Maximum Likelihood Estimator

You observe n datapoints: $x^{(1)}, \ldots, x^{(n)}$

Think: observations of n IID random variables: $X^{(1)}, \ldots, X^{(n)}$

Where: $X^{(i)}$ has likelihood (PDF) function: $f(X^{(i)} = x^{(i)} | \theta)$

Likelihood of data
$$L(\theta) = \prod_i f(X^{(i)} = x^{(i)}|\theta)$$

$$\log \begin{array}{c} \text{Likelihood} \\ LL(\theta) = \sum_i \log f(X^{(i)} = x^{(i)}|\theta) \end{array}$$

$$\text{Max Likelihood} \\ \hat{\theta}_{MLE} = \underset{\theta}{\operatorname{argmax}} \left(LL(\theta)\right)$$

You have now estimated parameters...

Side Plot

Linear Regression (simple)

$$X = CO_2$$
 level

Y = Average Global Temperature

N training datapoints

$$(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots (\mathbf{x}^{(n)}, y^{(n)})$$

Linear Regression Lite Model

$$Y = \theta \cdot X + Z$$

$$Z \sim N(0, \sigma^2)$$

$$Y|X \sim N(\theta X, \sigma^2)$$

Linear Regression (simple)

N training datapoints:
$$(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots (\mathbf{x}^{(n)}, y^{(n)})$$

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \left(-\sum_{i=1}^{n} (y^{(i)} - \theta x^{(i)})^2 \right)$$

$$\frac{\partial LL(\theta)}{\partial \theta} = \sum_{i=1}^{n} 2(y^{(i)} - \theta x^{(i)})(x^{(i)})$$

Linear Regression (simple)

Initialize: $\theta = 0$

Repeat many times:

gradient = 0

For each training example (x, y):

gradient += $2(y - \theta x)(x)$

 θ += η * gradient

Linear Regression (regular)

$$X_1 = Temperature$$

$$X_2 = Elevation$$

$$X_3 = CO_2$$
 level yesterday

$$X_4 = GDP$$
 of region

$$X_5 =$$
Acres of forest growth

$$Y = CO_2$$
 levels

Linear Regression (regular)

Problem: Predict real value Y based on observing variable X

Model: Linear weight every feature

$$Y = \theta_1 X_1 + \dots + \theta_m X_m + Z$$
$$= \boldsymbol{\theta}^T \mathbf{X} + Z$$

Training: Gradient ascent to chose the best thetas to describe your data

$$\hat{\theta}_{MLE} = \underset{\theta}{\operatorname{argmax}} \left(-\sum_{i=1}^{n} (y^{(i)} - \theta x^{(i)})^2 \right)$$

Linear Regression (regular)

```
Initialize: \theta_i = 0 for all 0 \le j \le m
```

```
Repeat many times:
   gradient[j] = 0 for all 0 \le j \le m
    For each training example (x, y):
        For each parameter j:
             gradient[j] += (y - \theta^T x)(-x[j])
```

$$\theta_j += \eta * gradient[j] for all $0 \le j \le m$$$

Predicting Warriors

Y = Warriors points

$$Y = \theta_1 X_1 + \dots + \theta_m X_m$$
$$= \boldsymbol{\theta}^T \mathbf{X}$$

$$X_1 = Opposing team ELO$$

$$X_2$$
 = Points in last game

$$X_3 = Curry playing?$$

$$X_4$$
 = Playing at home?

$$X_5 = 1$$

$$\theta_1 = -2.3$$

$$\theta_2 = +1.2$$

$$\theta_3 = +10.2$$

$$\theta_4 = +3.3$$

$$\theta_{5} = +95.4$$

Supervised Learning

Modelling

Training

Make Predictions

Our Path

Episode 2 The Song of The Last Estimator

Something rotten in the world of MLE

Foreshadowing..

Need a Volunteer

So good to see you again!

Two Envelopes

- I have two envelopes, will allow you to have one
 - One contains \$X, the other contains \$2X
 - Select an envelope
 - o Open it!
 - Now, would you like to switch for other envelope?
 - To help you decide, compute E[\$ in other envelope]
 - Let Y = \$ in envelope you selected $E[$ in other envelope] = \frac{1}{2} \cdot \frac{Y}{2} + \frac{1}{2} \cdot 2Y = \frac{5}{4}Y$
 - Before opening envelope, think either <u>equally</u> good
 - So, what happened by opening envelope?
 - o And does it really make sense to switch?

Thinking Deeper About Two Envelopes

- The "two envelopes" problem set-up
 - Two envelopes: one contains \$X, other contains \$2X
 - You select an envelope and open it
 - Let Y = \$ in envelope you selected
 - Let Z = \$ in other envelope

$$E[Z \mid Y] = \frac{1}{2} \cdot \frac{Y}{2} + \frac{1}{2} \cdot 2Y = \frac{5}{4}Y$$

- E[Z | Y] above assumes all values X (where 0 < X < ∞)
 are equally likely
 - Note: there are infinitely many values of X
 - So, not true probability distribution over X (doesn't integrate to 1)

All Values are Equally Likely?

Subjectivity of Probability

- Belief about contents of envelopes
 - Since implied distribution over X is not a true probability distribution, what is our distribution over X?
 - Frequentist: play game infinitely many times and see how often different values come up.
 - Problem: I only allow you to play the game once
 - Bayesian probability
 - Have <u>prior</u> belief of distribution for X (or anything for that matter)
 - Prior belief is a subjective probability
 - By extension, <u>all</u> probabilities are subjective
 - Allows us to answer question when we have no/limited data
 - E.g., probability a coin you've never flipped lands on heads
 - As we get more data, prior belief is "swamped" by data

Subjectivity of Probability

The Envelope, Please

- Bayesian: have prior distribution over X, P(X)
 - Let Y = \$ in envelope you selected
 - Let Z = \$ in other envelope
 - Open your envelope to determine Y
 - If Y > E[Z | Y], keep your envelope, otherwise switch
 - No inconsistency!
 - Opening envelope provides data to compute P(X | Y) and thereby compute E[Z | Y]
 - Of course, there's the issue of how you determined your prior distribution over X...
 - Bayesian: Doesn't matter how you determined prior, but you must have one (whatever it is)
 - Imagine if envelope you opened contained \$20.01

Envelope Summary: Probabilities are beliefs Incorporating prior beliefs is useful

Priors for Parameter Estimation?

Flash Back: Bayes Theorem

Bayes' Theorem (θ = model parameters, D = data):
 "Posterior" "Likelihood" "Prior"

$$P(\theta \mid D) = \frac{P(D \mid \theta) P(\theta)}{P(D)}$$

- <u>Likelihood</u>: you've seen this before (in context of MLE)
 - $_{\circ}$ Probability of data given probability model (parameter θ)
- Prior: before seeing any data, what is belief about model
 - $_{\circ}$ l.e., what is *distribution* over parameters θ
- Posterior: after seeing data, what is belief about model
 - $_{\circ}$ After data D observed, have posterior distribution p(θ | D) over parameters θ conditioned on data. Use this to predict new data.

MLE vs MAP

Data:
$$x^{(1)}, \dots, x^{(n)}$$

Maximum Likelihood Estimation

$$\hat{\theta}_{MLE} = \underset{\theta}{\operatorname{argmax}} f(X^{(1)} = x^{(1)}, \dots, X^{(n)} = x^{(n)} | \theta)$$

$$= \underset{\theta}{\operatorname{argmax}} \left(\sum_{i} \log f(X^{(i)} = x^{(i)} | \theta) \right)$$

Maximum A Posteriori

$$\hat{\theta}_{MAP} = \underset{\theta}{\operatorname{argmax}} f(\Theta = \theta | X^{(1)} = x^{(1)}, \dots, X^{(n)} = x^{(n)})$$

Notation Shorthand

MAP, without shorthand

$$\hat{\theta}_{MAP} = \underset{\theta}{\operatorname{argmax}} f(\Theta = \theta | X^{(1)} = x^{(1)}, \dots, X^{(n)} = x^{(n)})$$

Our shorthand notation

 θ is shorthand for the event: $\Theta = \theta$

 $x^{(i)}$ is shorthand for the event: $X^{(i)} = x^{(i)}$

MAP, now with shorthand

$$\hat{\theta}_{MAP} = \underset{\theta}{\operatorname{argmax}} f(\theta | x^{(1)}, \dots, x^{(n)})$$

MLE vs MAP

Data:
$$x^{(1)}, \dots, x^{(n)}$$

Maximum Likelihood Estimation

$$\hat{\theta}_{MLE} = \underset{\theta}{\operatorname{argmax}} f(x^{(1)}, \dots, x^{(n)} | \theta)$$

$$= \underset{\theta}{\operatorname{argmax}} \left(\sum_{i} \log f(x^{(i)} | \theta) \right)$$

Maximum A Posteriori

$$\hat{\theta}_{MAP} = \underset{\theta}{\operatorname{argmax}} f(\theta | x^{(1)}, \dots, x^{(n)})$$

Most important slide of today

Maximum A Posteriori

data:
$$x^{(1)}, \dots, x^{(n)}$$
 $\hat{\theta}_{MAP} = \underset{\theta}{\operatorname{argmax}} f(\theta | x^{(1)}, \dots, x^{(n)})$

$$\hat{\theta}_{MAP} = \underset{\theta}{\operatorname{argmax}} \frac{f(x^{(1)}, x^{(2)}, \dots, x^{(n)} | \theta) g(\theta)}{h(x^{(1)}, x^{(2)}, \dots x^{(n)})}$$

Maximum A Posteriori

data:
$$x^{(1)}, \dots, x^{(n)}$$

$$\hat{\theta}_{MAP} = \underset{\theta}{\operatorname{argmax}} f(\theta|x^{(1)}, \dots, x^{(n)})$$

$$\hat{\theta}_{MAP} = \underset{\theta}{\operatorname{argmax}} \frac{g(\theta) f(x^{(1)}, x^{(2)}, \dots, x^{(n)} | \theta)}{h(x^{(1)}, x^{(2)}, \dots, x^{(n)})}$$

$$= \underset{\theta}{\operatorname{argmax}} \frac{g(\theta) \prod_{i=1}^{n} f(x^{(i)} | \theta)}{h(x^{(1)}, x^{(2)}, \dots, x^{(n)})}$$

$$= \underset{\theta}{\operatorname{argmax}} g(\theta) \prod_{i=1}^{n} f(x^{(i)}|\theta)$$

$$= \underset{\theta}{\operatorname{argmax}} \left(\log(g(\theta)) + \sum_{i=1}^{n} \log(f(x^{(i)}|\theta)) \right)$$

Maximum A Posteriori

Log prior

$$\hat{\theta}_{MAP} = \underset{\theta}{\operatorname{argmax}}$$

Sum of log likelihood

Chose the value of theta that maximizes:

MLE vs MAP

Data: $x^{(1)}, \dots, x^{(n)}$

Maximum Likelihood Estimation

$$\hat{\theta}_{MLE} = \underset{\theta}{\operatorname{argmax}} f(x^{(1)}, \dots, x^{(n)} | \theta)$$

$$= \underset{\theta}{\operatorname{argmax}} \left(\sum_{i} \log f(x^{(i)} | \theta) \right)$$

Maximum A Posteriori

$$\hat{\theta}_{MAP} = \underset{\theta}{\operatorname{argmax}} f(\theta|x^{(1)}, \dots, x^{(n)})$$

$$= \underset{\theta}{\operatorname{argmax}} \left(\log(g(\theta)) + \sum_{i=1}^{n} \log(f(x^{(i)}|\theta)) \right)$$

Gotta get that intuition

$P(\theta \mid D)$ For Bernoulli

- Prior: θ ~ Beta(a, b); data = {n heads, m tails}
- Estimate p, aka θ

$$\hat{\theta}_{MAP} = \operatorname*{argmax}_{\theta} f(\theta|\mathrm{data}) = \operatorname*{argmax}_{\theta} f(\mathrm{data}|\theta)g(\theta)$$
 This is the potential potential point $f(\mathrm{data}|\theta) = \operatorname*{argmax}_{\theta} f(\mathrm{data}|\theta)g(\theta)$ and $f(\mathrm{data}|\theta) = \operatorname*{argmax}_{\theta} f(\mathrm{data}|\theta)$ This is ???

P(θ | D) For Bernoulli

- Prior: θ ~ Beta(a, b); data = {n heads, m tails}
- Estimate p, aka θ

$$\begin{array}{l} \hat{\theta}_{MAP} = \operatorname*{argmax} f(\theta|\mathrm{data}) &= \operatorname*{argmax} f(\mathrm{data}|\theta)g(\theta) \\ \text{This is the beta PDF} &= \operatorname*{argmax} \log g(\theta) + \log f(\mathrm{data}|\theta) \\ &= \operatorname*{argmax} \log \left[\frac{1}{\beta}\theta^{a-1}(1-\theta)^{b-1}\right] \\ &+ n \log f(\mathrm{heads}|\theta) \\ &+ m \log f(\mathrm{tails}|\theta) \\ &= \operatorname*{argmax} \log \frac{1}{\beta} + (a-1)\log\theta + (b-1)\log(1-\theta) + n \log\theta + m \log(1-\theta) \\ &= \operatorname*{argmax} (a-1+n)\log\theta + (b-1+m)\log(1-\theta) \end{array}$$

$P(\theta \mid D)$ For Bernoulli

- Prior: θ ~ Beta(a, b); D = {n heads, m tails}
- Estimate p, aka θ

$$\hat{\theta}_{MAP} = \underset{\theta}{\operatorname{argmax}} f(\theta|\operatorname{data})$$

$$= \underset{\theta}{\operatorname{argmax}} (a - 1 + n) \log \theta + (b - 1 + m) \log(1 - \theta)$$

$$= \frac{n + a - 1}{n + m + a + b - 2}$$

That's the mode of the updated beta

Hyper Parameters

MAP will estimate the most likely value of p for this model

Where'd Ya Get Them $P(\theta)$?

- θ is the probability a coin turns up heads
- Model θ with 2 different priors:
 - $P_1(\theta)$ is Beta(3,8) (blue)
 - $P_2(\theta)$ is Beta(7,4) (red)
- They look pretty different!

- Now flip 100 coins; get 58 heads and 42 tails
 - What do posteriors look like?

It's Like Having Twins

 As long as we collect enough data, posteriors will converge to the true value!

Conjugate Distributions Without Tears

- Just for review...
- Have coin with unknown probability θ of heads
 - Our prior (subjective) belief is that $\theta \sim \text{Beta}(a, b)$
 - Now flip coin k = n + m times, getting n heads, m tails
 - Posterior density: $(\theta \mid n \text{ heads}, m \text{ tails}) \sim \text{Beta}(a+n, b+m)$
 - Beta is conjugate for Bernoulli, Binomial, Geometric, and Negative Binomial
 - a and b are called "hyperparameters"
 - $_{\circ}$ Saw (a + b 2) imaginary trials, of those (a 1) are "successes"
 - For a coin you never flipped before, use Beta(x, x) to denote you think coin likely to be fair
 - How strongly you feel coin is fair is a function of x

Gonna Need Priors

Parameter

Distribution for Parameter

Bernoulli p

Binomial p

Poisson λ

Exponential λ

Multinomial p_i

Normal μ

Normal σ^2

Beta

Beta

Gamma

Gamma

Dirichlet

Normal

Inverse Gamma

Don't need to know Inverse Gamma. But it will know you...

Good Times with Gamma

- Gamma(k, θ) distribution
 - Conjugate for Poisson Rate
 - Also conjugate for Exponential, but we won't delve into that
 - Intuitive understanding of hyperparameters:
 - $_{\circ}$ Saw k total imaginary events during θ prior time periods

Good Times with Gamma

- Gamma(k, θ) distribution
 - Conjugate for Poisson Rate
 - Also conjugate for Exponential, but we won't delve into that
 - Intuitive understanding of hyperparameters:
 - $_{\circ}$ Saw k total imaginary events during θ prior time periods
 - Updating with observations
 - After observing n events during next t time periods...
 - $_{\circ}$... posterior distribution is Gamma(k + n, θ + t)
 - $_{\circ}$...MAP estimator for Poisson with Gamma prior is $(k+n)/(\theta + t)$
 - Example: Prior for rate is Gamma(10, 5)
 - Saw 10 events in 5 time periods. Like observing at rate = 2
 - Now see 11 events in next 2 time periods → Gamma(21, 7)
 - MAP rate = 3

Reviving an Old Story Line

The Multinomial Distribution $Mult(p_1, ..., p_k)$

$$p(x_1, \dots, x_k) = \frac{n!}{x_1! \dots x_k!} p_1^{x_1} \dots p_k^{x_k}$$

Multinomial is Multiple Times the Fun

- Dirichlet(a₁, a₂, ..., a_m) distribution
 - Conjugate for Multinomial
 - Dirichlet generalizes Beta in same way Multinomial generalizes Bernoulli

$$f(X_1 = x_1, X_2 = x_2, \dots, X_m = x_m) = K \prod_{i=1}^{n} x_i^{a_i - 1}$$

- Intuitive understanding of hyperparameters:
 - Saw $\sum_{i=1}^{m} a_i m$ imaginary trials, with $(a_i 1)$ of outcome i
- Updating to get the posterior distribution
 - \circ After observing $n_1 + n_2 + ... + n_m$, new trials with n_i of outcome i...
 - $_{\circ}$... posterior distribution is Dirichlet($a_1 + n_1, a_2 + n_2, ..., a_m + n_m$)

Best Short Film in the Dirichlet Category

- And now a cool animation of Dirichlet(a, a, a)
 - This is actually log density (but you get the idea...)

Thanks Wikipedia!

Example: Estimating Die Parameters

Your Happy Laplace

- Recall example of 6-sides die rolls:
 - X ~ Multinomial(p₁, p₂, p₃, p₄, p₅, p₆)
 - Roll n = 12 times
 - Result: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes
 - $_{\circ}$ MLE: $p_1=3/12$, $p_2=2/12$, $p_3=0/12$, $p_4=3/12$, $p_5=1/12$, $p_6=3/12$
 - Dirichlet prior allows us to pretend we saw each outcome k times before. MAP estimate: $p_i = \frac{X_i + k}{n + mk}$
 - $_{\circ}$ Laplace's "law of succession": idea above with k = 1
 - Laplace estimate: $p_i = \frac{X_i + 1}{n + m}$
 - $_{\circ}$ Laplace: $p_1=4/18$, $p_2=3/18$, $p_3=1/18$, $p_4=4/18$, $p_5=2/18$, $p_6=4/18$
 - No longer have 0 probability of rolling a three!

The last estimator has risen...

One Shot Learning

Single training example:

Is Peer Grading Accurate Enough?

Peer Grading on Coursera HCI.

31,067 peer grades for 3,607 students.

Is Peer Grading Accurate Enough?

= hyperparameter

- 1. Defined random variables for:
 - True grade (s_i) for assignment i
 - Observed (z_i^j) score for assign i
 - Bias (b_i) for each grader j
 - Variance (r_i) for each grader j
- 2. Designed a probabilistic model that defined the distributions for all random variables

$$z_i^j \sim \mathcal{N}(\mu = s_i + b_j, \sigma = \sqrt{r_j})$$
 $s_i \sim N(\mu_0, \sigma_0)$
 $b_i \sim N(0, \eta_0)$
 $r_i \sim \text{InvGamma}(\alpha_0, \theta_0)$

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller

Is Peer Grading Accurate Enough?

- 1. Defined random variables for:
 - True grade (s_i) for assignment i
 - Observed (z_i^j) score for assign i
 - Bias (b_i) for each grader j
 - Variance (r_i) for each grader j
- 2. Designed a probabilistic model that defined the distributions for all random variables
- 3. Found variable assignments using MAP estimation given the observed data

Inference or Machine Learning

Improved Accuracy

Error is based on ground truth assignments. Results are across all assignments (~10,000 submissions)

Next time: Machine Learning algorithms