Maximum A Posteriori
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Previously in CS109...



Game of Estimators
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Non spoiler alert: this didnt happen in game of thrones



Maximum Likelihood Estimator

You observe n datapoints: x(l), . ,x(”)

Think: observations of n lID random variables: X(l), . ,X(”)

Where: X ) has likelihood (PDF) function: f(X " = 2(9|9)

3 of dote
kel (i) _ .(3)
L) =] r(x® =z0)6)
.
09 \’.\\(e\\ho . .
Y92 L) = log (X = 2()|6)
\,'\\ke,\'\“‘ood

N\O* éMLE — arginax (LL(@))
0
You have now estimated parameters...



Side Plot

argmax

argmax of log
Gradient Ascent

Mother of
optimizations?



Linear Regression (simple)

X=CO0O,level

Y = Average Global Temperature

N training datapoints
(=M, yM), (x5, . (x™),y ™)

Linear Regression Lite Model

Y=0-X+Z 7 ~ N(0,0%) Y|X ~ N(0X,0?)



Linear Regression (simple)

/

N training datapoints:
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0= argma,x — Z () — g9
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Linear Regression (simple)

[Initialize: 0 0

-

p
Repeat many times:

Ve

| gradient = 0

Vs

For each training example (x, y):

gradient += 2(y - 0 x) (x)

-

{0 += n * gradient

-




Linear Regression (regular)

X, = Temperature
X, = Elevation

X;=CO, level yesterday
X,= GDP of region

Xs=Acres of forest growth

Y= CO, levels



Linear Regression (regular)

Problem: Predict real value Y based on observing variable X

Model: Linear weight every feature

=0'X +7

Training: Gradient ascent to chose the best thetas to describe
your data

n

éMLE — argmax( — Z(y(Z) — (933(2))2)

0 i—1



Linear Regression (regular)

[Initialize: 0

P 0 for all 0 £ j < m

-

-

-

Repeat many times:

Ve

| gradient[j] = 0 for all O L j<m

Vs

-

For each training example (x, y):

For each parameter j:

gradient[j] += (y - 0™x) (-x[j])

[é% += n * gradient[j] for all 0 < j < mJ




Predicting Warriors

Y = Warriors points

=0'X
X, = Opposing team ELO /91 =-2.3
X, = Points in last game 0,=+1.2
X;= Curry playing? > 6,=+10.2
X, = Playing at home? 60,=+3.3

Xs=1 L 0= +95.4J




Supervised Learning

Real World Problem

|
Model the problem

“' Training
Formal Model 6 Data

| /

Learning Algorithm
4

New — Prediction — Predictions
Data Function 6"



Modelling
[ Real World Problem\

Model the proble
Training
Formal Model 6 Data

Learning Algorithm
4

New — Prediction — Predictions
Data Function 6"




Training

Real World Problem
|
Model the problem
*P 5 s
Training
Formal Model 6 Data
| /
Learning Algorithm

v K

New Prediction
Data Function 8"

Predictions




Make Predictions

Real World Problem

|
Model the problem

‘y Training
Formal Model 8 Data
| /
Learning Algorithm
— .,* y &
New — Prediction — Predictions
Data Function 8°




Ouvur Path

Neural| Networks




Episode 2
The Song of The Last Estimator



Something rotten
in the world of MLE



Foreshadowing..



Need a Volunteer

So good to see
you again!



Two Envelopes

- | have two envelopes, will allow you to have one

= One contains $X, the other contains $2X

Select an envelope
o Openit!

Now, would you like to switch for other envelope?

To help you decide, compute E[$ in other envelope]

o LetY =$ in envelope you selected
1 Y

E[$ in other envelope] = ) +% 2Y = % Y

Before opening envelope, think either equally good

So, what happened by opening envelope?
o And does it really make sense to switch?



Thinking Deeper About Two Envelopes

- The “two envelopes” problem set-up

« Two envelopes: one contains $X, other contains $2X

» You select an envelope and open it
o LetY =$ in envelope you selected

o LetZ =% in other envelope

EZ|Y]=5 % +%-2Y =37

« E[Z| Y] above assumes all values X (where 0 < X < w0)
are equally likely
o Note: there are infinitely many values of X
o S0, not true probability distribution over X (doesn'’t integrate to 1)



All Values are Equally Likely?

o(X) Infinite powers of two...

0 10 20 40 60 80 100



Subjectivity of Probability

- Belief about contents of envelopes

« Since implied distribution over X is not a true probability
distribution, what is our distribution over X?

o Frequentist. play game infinitely many times and see how often
different values come up.

o Problem: | only allow you to play the game once
= Bayesian probability
o Have prior belief of distribution for X (or anything for that matter)

o Prior belief is a subjective probability

* By extension, all probabilities are subjective
o Allows us to answer question when we have no/limited data

- E.g., probability a coin you've never flipped lands on heads
- As we get more data, prior belief is “swamped” by data



Subjectivity of Probability

(\

p(X)

WM( | ﬂﬂn&ﬁﬂ

0 10 20 40 60 100
X



The Envelope, Please

- Bayesian: have prior distribution over X, P(X)

Let Y = $ in envelope you selected

Let Z = $ in other envelope

Open your envelope to determine Y

If Y > E[Z]| Y], keep your envelope, otherwise switch
o No inconsistency!

Opening envelope provides data to compute P(X | Y)
and thereby compute E[Z | Y]

Of course, there’s the issue of how you determined
your prior distribution over X...

- Bayesian: Doesn’'t matter how you determined prior, but you
must have one (whatever it is)

- Imagine if envelope you opened contained $20.01



Envelope Summary:
Probabilities are beliefs
Incorporating prior beliefs is useful



Priors for Parameter Estimation?



Flash Back: Bayes Theorem

- Bayes’ Theorem (6 = model parameters, D = data):

“Posterior”  “Likelihood” “Prior”
N\ I3(\IS | 6) I3(19/)
PO |D)= P(D)

« Likelihood: you’ve seen this before (in context of MLE)
o Probability of data given probability model (parameter 0)

= Prior: before seeing any data, what is belief about model
o l.e., what is distribution over parameters 0

« Posterior: after seeing data, what is belief about model

o After data D observed, have posterior distribution p(6 | D) over
parameters 0 conditioned on data. Use this to predict new data.




MLE vs MAP

Data: z\V,... z(™

Maximum Likelihood Estimation

Orirp = argmax f(XM =20 XM = ()9
0

— argmax lo X(i):x(i)ﬁ)
= (; 2 6)

Maximum A Posteriori

Arrap = argmax f(O = 9|X(1) =W o x) = x(n))
0



Notation Shorthand

MAP, without shorthand

Oprap = argmax FO=0/X1Y =20 x") = g0
0

Our shorthand notation

is shorthand for the event:[@ =0 ]

0
is shorthand for the event:[X (1) — x(i)]

MAP, now with shorthand

Orfap = argmax f(@\a:(l), . ,x(”))
0



MLE vs MAP

Data: z\V,... z(™

Maximum Likelihood Estimation

Orirp = argmax f(zM, ..., 2™|0)
0

_ % (¢)
arggna (; log f(x |(9)>
Maximum A Posteriori

Orrap = argmax f(0lzV), ... =)
0



Most important slide of today



Maximum A Posteriori

0

: ,x(") Oriap = argmax f(0zV), ...

A

likelihood Ve,

R (1) (2) (1)
. :argmakx? fla\D 2B x\™0)g(0)

0 (@, 2@,z

Pos fe"/'o i




Maximum A Posteriori

ZE(n) éMAP — arggnax f(@’:g(l),...,aj(n))

data: x(l)

’ L] L) L] ’

; B g(0) f(zM 2@ x))g)
MAP —arggnax AR ORI ON

_ 9(0) I T;— f(z"]6)
T W@, 2@, 2

—argmax 9(6) [ ] /(«16)
1=1

0

=argmax <log -|- E log ()|9 ) P



Maximum A Posteriori

Estimated C'T—@

parameter Log prior

/ !
é\]\414P —al'gimax (lOg Z log (Z) ‘6’ )

0

X
\ Sum of

Chose the value of theta log likelihood

that maximizes:



MLE vs MAP

Data: z\V,... z(™

Maximum Likelihood Estimation

Ovire = argmax f(a:(l). )

Maximum A Posteriori

Onfap = argmax f((9|:c(1) .. (”))

0
= argmax | log( lo 2 (0 0))




Gotta get that intuition



P(6 | D) For Bernoulli

« Prior: 0 ~ Beta(a, b); data = {n heads, m tails}
« Estimate p, aka 6

Orrap = argmax f(0]data) = argmax f(data|d)g(0)
0 0
This 1 *ge — >
peto © = argmax log g(0) + log f(data|f)

0
&——- This is 2?7



P(6 | D) For Bernoulli

« Prior: 0 ~ Beta(a, b); data = {n heads, m tails}
« Estimate p, aka 6

Orrap = argmax f(0]data) = argmax f(data|d)g(0)
0 0
This 1S *gﬁ = =Y
peto © = argmax log g(0) + log f(data|f)

0
&-—- Product of thetas and (1-theta)s

1
— aremaxlog | =01 (1 — 9)b~!
gr g [6 ( ) }

+n log f(heads|f)
+m log f(tails|d)

1
= argmax log 3 +(a—1)logh + (b—1)log(1 —0) + nlogtd + mlog(l —0)
0

= argmax(a — 1 +n)logfd + (b — 1+ m)log(l — )
6



P(6 | D) For Bernoulli

« Prior: 6 ~ Beta(a, b); D = {n heads, m tails}
« Estimate p, aka 6

Orrap = argmax f(0|data)
0

= argmax(a — 1 +n)logfd + (b— 1+ m)log(1 — )
Z

n+a—1
n+m-+a+b—2




Hyper Parameters

P PR Hyperparameter
[, p ) a, b are fixed
\ b
\ / Prior
VRN ~
) p ~ Beta(a,b)
\

r
/ Data distribution
@ N @ X; ~ Bern(p)

MAP will estimate the most likely value of p for this model




Where'd Ya Get Them P(68)?

0 is the probability a coin turns up heads
Model 6 with 2 different priors:

. P.(0)is Beta(3,8) (blue)
. P,(0)is Beta(7,4) (red)
They look pretty different!

Now flip 100 coins; get 58 heads and 42 tails

« What do posteriors look like?



It's Like Having Twins

argmax returns the mode
|

2
|
O_-——————

0.0 0.2 0.4 .6 0.8 1.0

X

« As long as we collect enough data, posteriors will
converge to the true value!



Conjugate Distributions Without Tears

. Just for review...

Have coin with unknown probability 6 of heads

= Our prior (subjective) belief is that 6 ~ Beta(a, b)

« Now flip coin kK = n + m times, getting n heads, m tails

« Posterior density: (0 | n heads, m tails)~Beta(a+n, b+m)

- Beta is conjugate for Bernoulli, Binomial, Geometric, and
Negative Binomial

= a and b are called “hyperparameters”
o Saw (a + b — 2) imaginary trials, of those (a — 1) are “successes”

= For a coin you never flipped before, use Beta(x, x) to
denote you think coin likely to be fair

o How strongly you feel coin is fair is a function of x



Gonna Need Priors

Parameter Distribution for Parameter
Bernoulli p Beta

Binomial p Beta

Poisson A Gamma
Exponential A Gamma
Multinomial p; Dirichlet

Normal p Normal

Normal o* Inverse Gamma,

Dont need to know Inverse Gamma. But it will know you...



Good Times with Gamma
- Gammal(k, 8) distribution

« Conjugate for Poisson Rate
o Also conjugate for Exponential, but we won’t delve into that

« Intuitive understanding of hyperparameters:

o Saw Kk total imaginary events during 8 prior time periods

().5 Iy T I\ 1] I Il LA I T L T
’ —— k=1.0,0= 40

k=2.0,0= 4.0
0.4 F k=3.0,0= 4.0
k=5.0,0=1.0
k=9.0,0= 2.0
k=7.5,0=1.0

03 [\

k=05,0=1.0

0.1

0 2 4 6 8 10 12 14 16 18 20



Good Times with Gamma
Gammay(k, 8) distribution

« Conjugate for Poisson Rate
o Also conjugate for Exponential, but we won’t delve into that

« Intuitive understanding of hyperparameters:

o Saw Kk total imaginary events during 8 prior time periods

» Updating with observations
o After observing n events during next t time periods...
o ... posterior distribution is Gamma(k + n, 6 + t)
o ...MAP estimator for Poisson with Gamma prior is (k+n)/(6 + f)

o Example: Prior for rate is Gamma(10, 5)

- Saw 10 events in 5 time periods. Like observing at rate = 2
- Now see 11 events in next 2 time periods - Gamma(21, 7)
o MAP rate =3



Revwmg cm Old Siory Line

4

The Multinomial Distribution Mult(p,, ..., p,)




Multinomial is Multiple Times the Fun

- Dirichlet(a,, a,, ..., a,,) distribution
« Conjugate for Multinomial

o Dirichlet generalizes Beta in same way Multinomial generalizes
Bernoulli

f(Xl :331,X2 :332,...,Xm :gjm) :KH:qu—l

= Intuitive understanding of hyperparameters:
o Saw ia, —m imaginary trials, with (a,— 1) of outcome j
. Updatir;_g to get the posterior distribution

o After observing n, + n, + ... + n_, new trials with n; of outcome I...

o ... posterior distribution is Dirichlet(a, + n,, a,+ n,, ..., a,,+ n,)



Best Short Film in the Dirichlet Category

- And now a cool animation of Dirichlet(a, a, a)
= This is actually log density (but you get the idea...)

2 ."
14
04
_1 ‘
_? ‘

-3 4 -

" P |

08", 08
06 ™ 0k
0.4 7"»_ : ’_,"’0.“ x‘
Thanks 2 0202

Wikipedia! :



Example: Estimating Die Parameters




Your Happy Laplace

Recall example of 6-sides die rolls:

X ~ Multinomial(p4, Po, P3, P4, Ps, Ps)
Roll n = 12 times

Result: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes
o MLE: p=3/12, p,=2/12, p5=0/12, p,=3/12, p5=1/12, pg=3/12

Dirichlet prior allows us to pretend we saw each

: : X +k
outcome k times before. MAP estimate: p, = fk
n+—m
- Laplace’s “law of succession”: idea above with k=1

X, +1

o Laplace estimate: p; =
n+m

o Laplace: p;=4/18, p,=3/18, p;=1/18, p,=4/18, ps=2/18, ps=4/18

o No longer have 0 probability of rolling a three!



The last estimator has risen...






One Shot Learning

Single training example: r

a & N &
restse:. @ A 2%
X & a
H )7 A

Gt~ E 2






Is Peer Grading Accurate Enough?

Peer Grading on Coursera
L HCI.

31,067 peer grades for
3,607 students.

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller



Is Peer Grading Accurate Enough?

1. Defined random variables for:

* True grade (s;) for assignment i
. * Observed (z/) score for assign i
* Bias (b;) for each grader j
’ 7. , » Variance (r;) for each grader j
iy
o\ S ) 2. Designed a probabilistic model that
ot TN B defined the distributions for all random
& variables
& . 2l ~ N(p=si+bj,0 = /15
: | S; N(NO) UO)
bi ~ N(07 770)
= hyperparameter

r; ~ InvGamma(ag, 0p)

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller



Is Peer Grading Accurate Enough?

1. Defined random variables for:
* True grade (s;) for assignment i
* Observed (z/) score for assign i
* Bias (b,) for each grader j
» Variance (r;) for each grader j

N
2. Designed a probabilistic model that

. defined the distributions for all random

variables

3. Found variable assignments using
MAP estimation given the observed

data ;‘

1 .\ g
hine Learn
Inference

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller



Improved Accuracy

Before: After:
Some 99%,
students
were within
getting very 10pp
erroneous
grades

-100 -80 -60 -40 -20 O 20 40 60 80

-100 -8 -20 0 20 40 60 80

Error is based on ground truth assignments. Results are across all
assignments (~10,000 submissions)

Parent’s Club



Next time: Machine Learning algorithms



